
Indexing string dictionaries

Mattia Odorisio, Mariagiovanna Rotundo

Pesaresi seminars, 19/01/2024

The problem

What and Why?

What?

Index a sorted dictionary D of strings s1, …,

sn while supporting operations such us:

● Access(i): retrieve the i-th string of

the dictionary D;

● Rank(P): find the lexicographic

position of P in the dictionary D.

Why?

Important problem because it appears in

a lot of applications like, for example,

databases, search engine, and

bioinformatics tools

Different kind of
existing solutions

● Classic approaches
● Learned approaches

Classic solutions

State-of-the-art solutions

Based on Tries:

● Fast Succinct Trie
● Path Decomposed Trie
● Compressed Collapsed Trie
● Patricia Trie

Trie: a multi-way tree whose edges are labeled by
characters of the indexed strings

Compacted trie

State-of-the-art ideas

Different approaches for these solutions:

○ exploit properties of density of Tries
○ reduce the height of the Trie
○ compacts subtries
○ 2-level approach to reduce the amount

of information kept in internal memory

Used in practice solution

Array of string pointers + binary search

autonomy autopsy key telecom telephone telephony

A

So what?

Different solution to index string dictionaries (of different sizes) exist.

Problem
All these solutions are proposed to index static string dictionaries.

What for dynamic
dictionaries?

OPEN PROBLEM

Used in practice solution

● Buffering
● Frequent rebuild of static data structures

Trie
Buffer

merge

Trie
Buffer

Pointer solutions

Pro:

● Easy to insert and delete nodes:
insert/delete the node and adjust
pointers

Cons:

● A lot of space (not succinct)

● Good complexity but random memory
accesses

Dynamic Tries

● HAT-trie: nontrivial space and
construction time bounds

● Trie based on Bonsai trie: some
operations on the trie are brute force

● Jansson’s dynamic trie: good in theory
but difficult to efficiently implement

● Ctrie++: state-of-the-art solution

Dynamic Tries:
what if the dataset
is very big?

Ctrie++: high space
requirements. Can require
more internal memory than
the one available

What can we do?

?

Static solution for big datasets

A 2-level design scheme:

● Storage level, where the strings are
compressed via Rear Coding and
stored in blocks.

● Indexing level, where the first string
of each block of the storage level is
indexed via a succinct Patricia Trie.

Succinct representations of Tries

dynamic succinct encoding for tries:

● LOUDS: insert and deletes of internal
nodes not (efficiently) supported

● BP and DFUDS operations in O(log n)
time and O(n/logn) bits of extra
space

1

2 3 4

5 6 7 8 9

1

2

6 74 5

8 9 10

3
insert

LOUDS

Existing studies

Many studies in literature:

● Dynamic bitvectors
● Dynamic rank and select operations
● Dynamic arrays

Each of this study introduce a slowdown and extra space.

Learned indexes

Learned Data Structures

Data structures enhanced by machine learning.

They can reveal and exploit patterns and trends in the input data for achieving
more efficiency in time and space, compared to previously known solutions.

Let’s start from numbers Revisiting this slide…

What?

Index a sorted sequence S of values v1, …, vn

while supporting operations such us:

● Access(i): retrieve the i-th value of the

sequence S;

● Rank(x): Given x ∈ U (universe),

return the number of elements in S

that are less than or equal to x;

Why?

• Member(x)

• Lookup(x)

• Predecessor(x)
• Range(x, y)
• Insert(x)

• Delete(x)

Anticipating some questions…

Can we compute all these operation with…?

● Binary search: YES, but it takes O(log n) time

● Hash Tables/Bloom filters etc.: Only some
operations, (recall x ∈ U, we cannot solve
predecessor and range queries)

● B+-Tree: YES, but Θ(n/B) space, and O(logBn)
I/Os, can we do better?

● Other ideas?

The Rank problem: a geometrical perspective

Let’s start from numbers…

Machine Learning?

We need a function.

Function: given a value, find its position

So what is a learned index

A learned index is a ML model, that
given a key x and a sorted sequence
S, returns the approximate position of
x in S.

Learned indexes, an example: RMI

RMI: a DAG of models.

Example with three layers, the
prediction done by Model 1.1 (root)
allows to pick a Model 2.?, that is
used to pick 3.? that predicts the rank.

Monotonic? x < y ↔ pred(x) ≤ pred(y)
it depends on the models and the
implementation. Three-Layer Recursive Model Index

Learned indexes, another example PGM-Index

It builds many linear models (segments), such that
the error is bounded by a threshold ε.
It is recursive: we need to find the right segment at
query time..

Background: samplesort a.k.a. muti-way quicksort
Partitioning:
● Allocate fixed size buffers called fragments, one for each partition
● Scan the input and classify each item in a fragment
● Once a fragment is full, copy it back in the original input array
● Defragmentation to get the partitions

O(1) Space, O(n) time, O(n/B) I/Os

Another practical application: sorting!

Another practical application: sorting!

● Multi-way Quicksort where the
bucketing is driven by a learned
model [O(1)], instead of classical
binary-search [O(log k)] over a
set of pivots.

● Model trained over a small
sample of the data (1%).

b(20) = (0.5 * 20) / 8 = 1

bucket 0

bucket 2

bucket 1

Another practical application: sorting!

The linear model is simple but not
effective!

An error happens when the linear
model assigns an element to an
erroneous bucket.

Recall the optimal case of the
quicksort is when all the partitions
have the same size.

Which is the better learned index for sorting?

Many details have to be considered…

● Training time
● Inference time
● Monotonicity of the index
● How balanced are the partitions created

…led to a new index proposal.

Learned data
structures for
strings

OPEN PROBLEM

Why is that an open problem?

● Strings have a variable length,
complicating both model inference
and memory layout.

● Strings are much larger objects
which are expensive to store,
compare, and manipulate.

● Strings tend to have worse
distributional properties than integer
keys (common prefixes, substrings
etc.).

All the strings can be encoded and treated
like numbers, so we can reuse the same
indexes.

Anticipating some questions…

Can we simplify the problem? Some ideas:

● Can we discard the least common prefix? YES, of
course.

● Can we truncate the string to have a bounded
representation? NO, looking only at the first
characters is often enough to determine the
approximate rank. But what happens when the
distribution is far from being linear?

Existing proposals

● RMI for strings: Truncate the string and treat them as numbers, if the error
exceed a given threshold, use a B+-Tree.

● RSS: Compress the strings, starts as a trie, then it switches to a radix spline
model when the error below a threshold.

● SIndex: Greedily partitions the input into groups that are approximated with a
linear model with mean error below a threshold. It uses a piecewise linear
regression model to route the queried string to the correct group.

What we have seen… ● Classic approaches
○ state-of-the-art and used-in-practice

solutions to index static string
dictionaries

○ existing approaches for dynamic
string dictionaries and a possible
idea to index dictionaries that are
huge

● Learned approaches
○ what are learned data structures
○ two examples
○ how to use them for sorting
○ open problem: Learned string

indexing

Thank you!

